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A transition to chaos via quasiperiodicity is observed in the output of a directly modulated self-
pulsing semiconductor laser. By sweeping the frequency and amplitude of the current
modulation, several frequency-locked states (Arnol’d tongues) are mapped out directly. Good
agreement with the predictions of a rate equation model is obtained.

In this letter, experimental results on the quasiperiodic
route to chaos in a modulated self-pulsing semiconductor
laser are presented for the first time. A direct determination
of the structure of the frequency-locked states is also report-
ed. The results are in good agreement with the predictions of
a rate equation model for a laser with a saturable absorber.

The observed behavior of the driven self-oscillatory la-
ser has features that are generic to nonlinear systems charac-
terized by the presence of two competing frequencies.' If the
driving frequency is an integer multiple or submultiple of the
intrinsic pulsation frequency the phenomenon of frequency
locking can occur. Such frequency locking is of practical
importance in short pulse generation and in the stabilization
of oscillators.? If the two frequencies are incommensurate,
the resulting oscillations are usually quasiperiodic. A direct
transition from quasipericdic to chaotic oscillation can oc-
cur if the amplitude of the external modulation is increased
while maintaining a fixed irrational value for the ratio
between the two frequencies. Certain universal features of
this transition to chaos have recently been tested in a fluid
dynamical experiment.’ Here we report this transition in an
optical system that is well characterized by a finite-dimen-
sional set of rate equations.

The small-signal modulation response of semiconductor
lasers exhibits a peak at a relaxation oscillation frequency
that characterizes the rate of energy exchange between pho-
tons and charge carriers within the cavity. In stable, well-
behaved lasers, this resonance is a rather broad, flat feature.
By momentarily pulsing the drive current beyond the
threshold for catastrophic optical damage, self-sustained
pulsations can be induced in a nominally stable laser. These
pulsations arise because of the formation of defects that act
as saturable absorbers and lead to repetitive Q switching.*
The spectrum of the pulsing laser now exhibits sharp peaks
at the intrinsic oscillation frequency and its harmonics. For
the AlGaAs/GaAs lasers used in our experiments, the fun-
damental pulsation frequency f;, can be tuned between 0.5
and 3 GHz by varying the dc bias current.

The second frequency f,,, is imposed by an rf generator
whose output modulates the laser pumping current at rates
between 0.3 and 2.0 GHz. In the presence of the external
modulation, the intrinsic resonance frequency is shifted by
an amount that depends on the amplitude of the modulation.
We thus speak of a “dressed” intrinsic frequency f§ and
define a winding number p = f /f.., . If the winding number

takes on a rational value p/g, where p and q are integers, the
output pulsation frequency locks to a harmonic or subhar-
monic of the modulation. There is a range of frequency de-
tunings within which the external modulation can effective-
ly entrain the self-pulsation frequency. This locking range
increases with the amplitude of the external modulation. By
sweeping the frequency and amplitude of the modulation, we
have mapped out the structure of the frequency-locked
states. On a plot of modulation amplitude versus frequency
ratio, the locked states form regions known as Arnol’d
tongues® whose boundaries separate the periodic motions
from the quasiperiodic and aperiodic oscillations. Figure 1
shows several of these frequency-locked regions for small
integer values of p and ¢. The organization of the locking
regions follows the Farey tree structure.® Between any two
locked bands with winding numbers p,/¢, and p, /q,, there
exists another locked band whose winding number is given
by the Farey sum p;/q, = (p, + p,)/(g, + ¢, ). For ex-
ample, the locked band with winding number 2/3 is the
Farey composition of the bands 1/1 and 1/2. Locked states
with large denominators have very narrow widths, are easily
destabilized by noise, and are thus difficult to resolve. There
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FIG. 1. Frequency-locked regions (Arnol’d tongues) for a modulated self-
pulsing laser. The plot shows the modulation depth vs the ratio of the intrin-
sic pulsation frequency at zero drive (w ) to the external modulation fre-
quency. The dotted lines show paths of fixed winding number at the golden
mean ¢, and at the silver mean o, . Because the intrinsic frequency shifts
with the amplitude of the modulation, paths of fixed winding number are
not straight lines.
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are other locked states (such as p = 4/5) which by virtue of
their proximity to the strong fundamental resonance are
pulled by that resonance and tend to merge with it. We note
that the measured Arnol’d tongue structure is independent
of the direction in which the frequency or amplitude of the
modulation is varied. No sign of hysteresis is observed.

Outside the locking regions, the winding number p is
irrational. For small modulation amplitudes, the oscillations
in the unlocked regions are generally quasiperiodic, reflect-
ing a complex beating between the two incommensurate fre-
quencies. The time series and power spectra associated with
the quasiperiodic oscillations are shown in Fig. 2 for a modu-
lation index of m = 0.05. The quasiperiodic spectra (dashed
curves) contain discrete lines at the modulation frequency,
the intrinsic resonance frequency, and its harmonics, as well
as the various combination frequencies.

By maintaining a fixed irrational value (to within
1.0%) for the winding number, we have observed a direct
transition from quasiperiodicity to chaos without frequency
locking. This was accomplished by slowly increasing the
depth of modulation and adjusting the driving frequency to
maintain a constant ratio between that frequency and the
shifted intrinsic resonance frequency. The chosen irrational
values of the winding number were the golden mean

o, = (5 — 1)/2 and the silver mean, o, =2 — 1. These
represent the “worst” irrational numbers in the sense that
they are the most difficult to approximate by rational
numbers. By staying close to these values, frequency locking
is avoided and universal features of the transition from qua-
siperiodicity to chaos can be studied. The chaotic time series
and spectra thus obtained are also shown in Fig. 2. At the
transition to chaos the sharp frequency peaks in the spec-
trum disappear. There is a significant rise in the background
and the spectrum now consists of a broad, continuous distri-
bution with a peak at the modulation frequency. On close

examination of some of the single-shot chaotic time series, it
is possible to identify small time intervals that bear the signa-
ture of nearby resonances. The oscillating system appears to
wander erratically between several phase-locked reso-
nances. It is believed that most driven nonlinear oscillators
proceed to chaos via such an interaction of resonances.'

The observed phenomena of self-pulsing, quasiperiodi-
city, frequency locking, and chaos have been successfully
modeled by rate equations for a laser with a fast saturable
absorber”

@f:[_N_G(N_-l-)S, (1)
dt 2

-1
EE:G(N—J-)S—§-+BN_115(1+§—) .
2 T S,

dt o
(2)

Here N and § are the carrier and photon densities, normal-
ized by the threshold carrier density. The modulated injec-
tion current, normalized by its value at threshold, is

I=1, + I;sin(Qu). (3

Time is measured in units of the spontaneous electron life-
time and 7 is the photon lifetime in those units. G is propor-
tional to the gain, /3 is the fraction of spontaneous emission
coupled into the lasing mode, and A characterizes the
amount of saturable absorption. The nonlinear absorber
bleaches at a saturation photon density S, . Note that modu-
lation of the laser injection current makes the system of Egs.
(1) and (2) nonautonomous® and provides the third degree
of freedom required for chaos.

Figure 3 shows an example of the quasiperiodic, fre-
quency-locked, and chaotic output spectra computed from
Egs. (1)-(3). The numerical solutions confirm the deter-
ministic nature of the observed random behavior. Further-
more, they show that the simple period-doubling route to

m=005
m=070

0 05 10 15
FREQUENCY, GHz

m=005 ¢ m=0.05

m=060 m=070

(a)

5ns

FIG. 2. Spectra of quasiperiodic
oscillations (dashed lines) and
chaotic oscillations (solid lines)
and the associated time series ob-
tained for fixed winding numbers
near (a) the golden mean and (b)
the silver mean. m is the modula-
tion index. The modulation fre-
quency is ~1 GHz in (a) and
~1.5GHzin (b).
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FIG. 3. Computed output intensity spectra for a frequency ratio
Wy /@ = 0.59 and different modulation depths, m. The external modula-
tion is shown as the dashed line. (a) m = 0.01; quasiperiodic (b) m =0.1;
phase-locked {c) m = 0.3; chaotic. Note that in this sequence the winding
number is not fixed. The parameters used in Egs. (1)-(3) are I = 1.2,
G =30x10*, r=3X10"* B=50x10"°, h =240, 5§, = 0.001. The
spontaneous carrier lifetime is 3.0 ns.

chaos previously suggested’ for modulated self-pulsing la-
sers is an unlikely one. Over much of parameter space fre-
quency locking and quasiperiodic oscillations are observed.
The simulations also reveal the existence of high-period
locked states which, because of intrinsic noise, are not ob-
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served experimentally.’® We note that quasiperiodic and fre-
quency-locked dynamics are absent in stable lasers that do
not exhibit self-excited oscillations. In such lasers, the re-
sponse to a step input current consists of highly damped
relaxation oscillations. The predicted response to a current
modulation is then either periodic or chaotic, with the tran-
sition to chaos occurring via a series of successive subhar-
monic bifurcations."'

In conclusion, we have experimentally determined the
structure of the frequency-locked regimes of a modulated,
self-pulsing laser. By maintaining a fixed irrational winding
number, we have observed a direct transition from quasiper-
iodicity to chaos in these lasers. Our results show that the
period-doubling route to chaos is not the only one for modu-
lated semiconductor lasers. In fact, for lasers with well-de-
veloped pulsations, the route to chaos via quasiperiodicity is
the more likely one.

One of us (H. G. W.) acknowledges illuminating dis-
cussions with Professor F. T. Arecchi.
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