Physics 420

Introduction to Biophysics – Fall 2018

Time: Tue, Fri 9:10-11:00 AM Place: 1311 HN Instructor: Associate Professor Hyungsik Lim Email: Hyungsik.Lim@hunter.cuny.edu Office: 1237 Hunter North, 695 Park Avenue

Office hours: by appointment

Pre-requisites or Co-requisites: Permission of instructor

Description: The goal of this course is two-fold; 1) to learn how to build a simple physical model to produce testable predictions for diverse living systems from gene expression to neural networks and 2) to understand modern techniques that opened the fields of molecular biophysics.

Recommended texts:

"Physical Biology of the Cell", Rob Philips, Jane Kondev, and Julie Theriot

"Molecular Driving Forces", Ken Dill and Sarina Bromberg

"Biological Physics: Energy, Information, Life", Philip Nelson

Grading: Homework 20%: Midterms 40%: Final 40%.

Preliminary Class Schedule:

Week 1	8/28	Biology in Numbers	8/31	Random Walk Model	
Week 2	9/4	Random Walk I: DNA	9/7	Random Walk II: Protein	
Week 3	9/11	No class	9/14	Two-state System I	HW#1
Week 4	9/18	No class	9/21	Two-state System II	
Week 5	9/25	Chemical Reaction I	9/28	Chemical Reaction II	
Week 6	10/2	Midterm #2	10/5	Cooperativity I	HW#2
Week 7	10/9	Cooperativity II	10/12	Allostery I	
Week 8	10/16	Allostery II	10/19	Network I	
Week 9	10/23	Network II	10/26	Kinetics of Two-state System	HW#3
Week 10	10/30	Random Telegraph Model	11/2	Bursting I: Ion Channel	
Week 11	11/6	Bursting II: Transcription	11/9	Midterm #2	
Week 12	11/13	Excitable Membrane I	11/16	Excitable Membrane II	HW#4
Week 13	11/20	Hodgkin-Huxley Model I	11/23	No class	
Week 14	11/27	Hodgkin-Huxley Model II	11/30	Biophysics of Computation	
Week 15	12/4	Biotechniques I	12/7	Biotechniques II	HW#5
Week 16	12/11	Biotechniques III	12/14	Final Exam	

Final Exam: 12/14/2018 9:10 - 11:00 AM

Policy:

Hunter College regards acts of academic dishonesty (e.g. plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records or official documentations) as serious offenses against the values of intellectual honesty. The college is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures. http://www.hunter.cuny.edu/studentservices/advising/policies-sub/policies-academic-integrity

Table of Contents

Introduction - Biology in Numbers

Random Walk Model

Random Walk Model I: Brownian Motion and Diffusion

Random Walk Model II: Conformation of Linear Biomolecules

*Random Walk Model III: Motility in Low Reynolds Number

Two-State System: Adding Energy to Random Walk Model

Two-State System I: Modulating Equilibrium by Temperature and Energy

Two-State System II: Diffusion of Molecular Motors under Force

Two-State System III: Conformation of Linear Biomolecules under Force

Actuation of Two-State Systems by Ligand Binding

Laws of Chemical Reaction

Cooperative Binding: Pauling Model

Allostery: Monod-Wyman-Changeux Model

Ion Channels and Transcription Factors

Two-State System with Feedback: Bistability and Oscillation *Network of Two-State Systems with Interaction: Ising Model

Nonlinear Membrane: Hodgkin-Huxley Model

Electrical Properties of Excitable Membranes

Generation of Action Potentials

Conduction of Action Potentials

Fluctuating Single Molecules

Kinetics of Two-State System: Poisson Process

Bistable Neuron and Information Coding

*Two-State System with Dark State: Bursting Process

Biotechniques

Optical Tweezer (Single-molecule Force Spectroscopy)

Förster Resonance Energy Transfer (FRET)

Fluorescence Correlation Spectroscopy (FCS)